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Enrico Bertuzzoe, Mercedes Pascualf,∗

aSchool of Architecture, Civil and Environmental Engineering, Ecole Polytechinque
Fédérale de Lausanne, Switzerland

bDepartment of Ecology and Evolutionary Biology, University of Michigan, MI, United
States of America

cFaculty of Public Health and Policy, London School of Hygiene and Tropical Medicine,
United Kingdom

dCatalan Institute of Climate Sciences, Spain
eDepartment of Environmental Sciences, Informatics and Statistics, University Ca'

Foscari, Venice, Italy
fDepartment of Ecology and Evolution, University of Chicago, IL, United States of

America

Abstract

Seasonal patterns in cholera dynamics exhibit pronounced variability across

geographical regions, showing single or multiple peaks at different times of

the year. Although multiple hypotheses related to local climate variables

have been proposed, an understanding of this seasonal variation remains in-

complete. The historical Bengal region, which encompasses the full range of

cholera’s seasonality observed worldwide, provides a unique opportunity to

gain insights on underlying environmental drivers. Here, we propose a mech-

anistic, rainfall-temperature driven, stochastic epidemiological model which

explicitly accounts for the fluctuations of the aquatic reservoir, and analyze
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with this model the historical dataset of cholera mortality in the Bengal re-

gion. Parameters are inferred with a recently developed sequential Monte

Carlo method for likelihood maximization in partially observed Markov pro-

cesses. Results indicate that the hydrological regime is a major driver of the

seasonal dynamics of cholera. Rainfall tends to buffer the propagation of

the disease in wet regions due to the longer residence times of water in the

environment and an associated dilution effect, whereas it enhances cholera

resurgence in dry regions. Moreover, the dynamics of the environmental wa-

ter reservoir determine whether the seasonality is unimodal or bimodal, as

well as its phase relative to the monsoon. Thus, the full range of seasonal

patterns can be explained based solely on the local variation of rainfall and

temperature. Given the close connection between cholera seasonality and

environmental conditions, a deeper understanding of the underlying mech-

anisms would allow the better management and planning of public health

policies with respect to climate variability and climate change.

Keywords: Infectious disease, modelling, cholera, seasonality, endemic,

historical dataset, Bengal

1. Introduction1

Although diarrheal diseases are preventable through suitable sanitary2

conditions, education and hygiene [46], they remain the second leading cause3

of mortality and are responsible for 20% of the deaths among children under4

5 years of age [10]. In particular, although the treatment of cholera today5

is relatively easy and affordable, the disease remains a public health threat6
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across the globe, and an endemic problem in the estuary of the Ganges, its7

native habitat.8

A clear explanation for the diverse seasonal patterns of cholera outbreaks9

in endemic areas has remained elusive [37]. Previous studies addressing the10

role of climate drivers in disease dynamics have focused on interannual vari-11

ability while prescribing the intra-annual seasonality [30]. The few proposed12

explanations for seasonality have relied on complex environmental interac-13

tions that vary with spatial location, involving regional hydrological models14

[6], river discharge [28, 3], sea surface temperature [17, 7], and plankton15

blooms [2, 15, 28]. No simple and unified mechanism based on local cli-16

mate variables has been considered that can account for different seasonali-17

ties within a region and across different regions of the world [20]. A better18

understanding of seasonality in relation to climate variables would provide19

a basis to better understand the effects of climate variability and climate20

change in general.21

Bangladesh and North-East India are endemic regions for cholera that22

harbor the causing pathogen in the environment, the bacterium V. cholerae.23

The interplay of high population density, seasonal hydroclimatology, flood-24

plain geography and coastal ecology makes this region particularly vulnerable25

to periodic outbreaks [3]. This region encompasses the most heterogeneous26

temporal patterns of endemic cholera dynamics worldwide, ranging from a27

single annual peak during or preceding the rainy season to a double peak in28

the pre-and post-monsoon periods [34, 43] (Fig. 1). These patterns of recur-29

rent outbreaks are still prevalent today in North-East India and Bangladesh,30

as well as in various other regions of the world [23, 16, 20, 22]. If they have a31
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common explanation based on hydrology and local climate conditions, their32

understanding can provide insights into the causes of endemicity and suggest33

modifications of the environment to mitigate or eliminate disease burden34

locally.35

Through the analysis of a unique historical dataset containing 40 years of36

monthly meteorological, demographic and epidemiological records, we pro-37

pose a process-based model for the population dynamics of cholera driven38

by local rainfall and temperature, and show that this model is able to cap-39

ture the full range of seasonal patterns of this large estuarine region. The40

transmission model explicitly accounts for volume fluctuations of the aquatic41

reservoir and for the environmental bacterial concentration.42

Although the crucial role played by the aquatic reservoir in the popula-43

tion dynamics of the disease has already been widely assessed (e.g. [15, 37,44

3, 34, 15, 38, 36, 7, 1, 27, 22, 4]), this work provides the first investigation of45

the full range of seasonal incidence patterns with a simple process-based ap-46

proach. The model combines the two opposing views on the dominant drivers47

behind cholera epidemiological patterns [37]: that of the “localists” support-48

ing a dominant role of the environment and of an environmental reservoir in49

transmission, and that of the “contagionists”, emphasizing human-to-human50

transmission and sanitary conditions. Mathematical models confronted to51

time series data provide a useful tool to examine different hypotheses con-52

cerning the climatic influences on disease dynamics, including the timing and53

causes of seasonal patterns [5, 15]. They further provide a basis for climate-54

based early warning systems, and for evaluating mitigation strategies for55

environmentally driven infectious diseases [38].56
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Figure 1: Three distinct cholera patterns representative of those found in the historical

dataset as a whole: (1) a double peak, respectively pre- and post-monsoon, in the district

of Dhaka; (2) a single wide peak from post- to pre-monsoon in the coastal district of

Midnapore; and (3) a single annual peak during the monsoon in the drier north-western

district of Patna. The lines correspond to the median of the monthly values, and the

shaded areas, to the envelope of the data (bounded by the 10% and 90% quantiles) of the

yearly values.

2. Material and Methods57

2.1. The historical dataset58

The former Bengal region constitutes the eastern part of the Indian sub-59

continent, and corresponds to the Indian state of West Bengal and the nation60

of Bangladesh today. It comprises the world’s largest delta and is the second61

most densely populated region around the globe. Besides Bengal, the study62

5



area also includes the Indian states of Assam (north-east), Bihar (north-63

west), Meghalaya and Tripura (east). Except for the dryer and mountainous64

north-western parts, this tropical and humid region is a fertile alluvial plain.65

The low elevation of the delta (Fig. 2) allows inland intrusions of salt water66

during low river discharges.67

Figure 2: Elevation map of Bengal and its water bodies. Circles indicate the three repre-

sentative districts presented in this paper.

An extensive data set on cholera deaths for 155 districts in 7 provinces68

from 1891 through 1941 was collected from the records of the sanitary com-69

missioners of the former British East Indian province of Bengal. A decadal70

population census is also available for the same period. The published results71

for 1891, 1901, 1911, 1921, 1931 and 1941 were linearly interpolated after cor-72

rections for administrative changes. Monthly temperature and rainfall data73

were also obtained from the India Weather Review, Annual Reports of the74

Meteorological Department, Government of India, at the level of districts. A75
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monthly average was used for each location. Figure 3 illustrates the season-76

ality of these environmental variables for the three representative districts77

that are the focus of this study: Dhaka, Midnapore and Patna. (Although78

the methodology has been successfully tested for other districts, this work79

focuses on the three aforementioned ones whose representative seasonalities80

correspond to those of their respective regions, and cover the full range of81

observed seasonal patterns within the data set as a whole).82

0

2

4

6

J F M A M J J A S O N D J
Month

R
ai

nf
al

l [
m

/y
ea

r]

Patna

Dacca

Midnapore

25

30

35

40

J F M A M J J A S O N D J
Month

Te
m

pe
ra

tu
re

 [C
el

si
us

 d
eg

re
es

]
Patna

Dacca

Midnapore

ba

Figure 3: Seasonality of rainfall (a) and temperature (b) for three representative districts.

The lines represent the median of the monthly variables across different years, whereas the

shaded areas represent the envelope of the data (bounded by the 10% and 90% quantiles)

of the yearly values.

2.2. Models83

In this study we develop a non-linear, stochastic epidemiological model84

for cholera dynamics that builds upon previous efforts [30, 40, 6, 41]. The85

system is an expanded SIR-like model (for Susceptible-Infected-Recovered86
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classes of individuals) with 7 compartments (Fig. 4). The population of re-87

covered individuals is split into 3 compartments, to change the distribution88

of the duration of immunity from the typical exponential of models with a89

single recovery compartment, to a more realistic gamma distribution (with a90

characteristic duration or mode). This formulation provides a more flexible91

and realistic biological assumption, since an exponential distribution con-92

siders an immune duration independent from the time since an individual93

has recovered [35]. Three compartments provide a proper trade-off between94

allowing the implementation of a gamma distribution while incurring a rea-95

sonable computational cost. The model has two additional state variables,96

not present in standard SIR formulations, for the population of pathogens in97

the aquatic environment and for the volume of the aquatic reservoir, respec-98

tively.99

M
Mortality

S
Susceptible

H
Population

I
Infected

R1
Recovered

R2 
Recovered

R3 
Recovered

γ κε κε

m

κε

λ

V
Volume of 

water

B
Bacteria

JT

Figure 4: Diagram of the compartmental model. The rectangles correspond to the states

variables and the circles, to observations that enter as environmental covariates (temper-

ature and rainfall) or to the measurement variable (here, deaths). For simplicity, natural

deaths are not included here in the diagram but are taken into account in the model.
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Figure 4 depicts a diagram of this compartmental model. In this diagram,100

S(t) denotes the number of susceptible individuals at time t, I(t), the num-101

ber of infections, and R1(t), R2(t), R3(t) correspond to the multiple stages102

of recovery. B(t) gives the bacterial abundance in the aquatic reservoir, and103

V (t), the volume of this reservoir per unit area. In addition, H(t) stands104

for the human population entering the system (births), M(t), for the indi-105

viduals dying from cholera, λ(t), for the force of infection, T (t), for the local106

temperature, and J(t), for the local rainfall. The diagram of Figure 4 can be107

written as the following set of coupled stochastic differential equations:108

dS

dt
= κεR3 + µH(t) +

dH

dt
(t)− (λ(t) + µ)S (1)

dI

dt
= λ(t)S − (γ +m+ µ)I (2)

dR1

dt
= γI − (κε+ µ)R1 (3)

dR2

dt
= κεR1 − (κε+ µ)R2 (4)

dR3

dt
= κεR2 − (κε+ µ)R3 (5)

dV

dt
= J(t)− ET (T, V )− f(V ) · V (6)

dB

dt
= −µB(T )B + p(t)[1 + φ · J(t)]I · ξ(t)− f(V )B (7)

where µ [s−1] denotes the birth and mortality rate (1/µ is the life expectancy,109

fixed to 50 years), κ [-], the number of recovered compartments (here equal to110

3), ε [s−1], the rate of immunity loss, dH/dt(t), the observed changes in pop-111

ulation size, m [s−1], the mortality rate due to disease, and γ [s−1], the rate112
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of recovery from infection. The force of infection λ(t) [s−1] depends on the113

exposure rate β [s−1] and on the environmental concentration of pathogens114

through a saturating function [15]:115

λ(t) = β

B(t)
V (t)A

B(t)
V (t)A

+K
, (8)

where A [m2] is the geographical area in contact with the human population,116

and K is the half saturation concentration [#bacteria m−3].117

The evolution of the volume of water per unit area V [m] is driven by the118

hydrological cycle (Eq. 6), namely by rainfall J [ms−1], evapotranspiration119

ET [ms−1] and drainage. Raw monthly rainfall data has been employed120

and interpolated to satisfy the daily time step of the model. The potential121

evapotranspiration (ETp) is computed according to a re-calibrated Blaney-122

Criddle formula [9, 45, 44] based on historical temperature records. This123

modified form incorporates the new multiplicative and additive coefficients124

(0.35 and 2.5 respectively, in place of 0.46 and 8) re-calibrated to region-125

specific values by Sperna Weiland et al. [44]. This formula corresponds to the126

potential quantity of water that can be evapotranspired assuming that plants127

are in optimal conditions. When water availability is a limiting factor, the128

actual evapotranspiration ET decreases according to the following equation:129

ET (T, V ) =

ETp(T ) · V (t)
Vt

if V (t) < Vt

ETp(T ) else,
(9)

with Vt a calibrated parameter acting as a threshold for potential evap-130

otranspiration. This formulation used here allows regions with different131

environmental conditions to exhibit different evapotranspiration behaviors.132

Drainage corresponds to the flux of water leaving the area and it depends133
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on many factors, including soil type, topography, and the structure of the134

river network. Here it is modelled as a function of the volume V through a135

calibrated 3-parameter function describing the drainage rate f(V ):136

f(V ) = δ
V (t)α

V (t)α + Ṽ α
. (10)

The three parameters δ [s−1], α [-] and Ṽ [m] flexibly change the behavior137

of the drainage function and allow different temporal scales of the responses138

to an increasing water volume (e.g. delayed or immediate drainage). These139

different responses allow the representation of the hydrological characteristics140

of different areas (e.g. mountainous versus estuarine).141

The evolution of the environmental pool of bacteria (Eq. 7) results from142

a balance between contamination from infected individuals, pathogen death143

and drainage. The net death rate µB [s−1] is assumed to be linearly dependent144

on temperature:145

µB(T ) = µ̄B(1− ε T − T̄
Tmax − T̄

), (11)

where the temperature is in degree Celsius. The parameter µ̄B [s−1] de-146

notes the average death rate of the bacterium, ε [-], the dependency on tem-147

perature, and T̄ [◦C] and Tmax [◦C] correspond respectively to the mean and148

maximum temperature of the studied area over the 40 years. When ε is larger149

than one, the death rate can become negative which describes the possible150

reproduction of bacteria in the environment at high temperature. The input151

from infected individuals is modeled through the term p(t)[1 +φ ·J(t)]I · ξ(t)152

where p(t) is the per capita rate at which infected individuals shed bacteria153
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that contaminate the environmental reservoir. As the cholera time series154

indicate a long-term decrease in the number of deaths in some districts, we155

assume that sanitary conditions, represented by the parameter p [-], can156

potentially change and model this process through an exponential function157

p(t) = p0e
−d(t−t̄), where t̄ [s] corresponds to the middle of the simulation158

period and p0 [-] and d [s−1] are two calibration parameters. The contam-159

ination process is assumed to be enhanced by rainfall which can wash out160

contaminated sites and deliver bacteria to the water reservoir [41, 18]. This161

input is accounted for by the parameter φ [sm−1] [41]. Finally, ξ(t) is the162

process noise of the model, with ξ(t) = dW
dt

and dW ∼ ΓWhiteNoise(µW , dt)163

(µW equals the non-zero expected value, fixed here to 0.015 after an initial164

calibration of the model to the different districts). The last term, f(V ) · B,165

accounts for the bacteria within the water reservoir leaving the area through166

drainage.167

By normalizing bacterial counts as B∗ = B/(KA), three parameters (p0,168

K and A) are grouped into a single one, namely the ratio θ0 = p0/(KA),169

which reduces the number of parameters to be estimated. It follows that Eq.170

7 becomes dB∗

dt
= −µB(T )B∗ + θ[1 + φ · J(t)]I · ξ(t)− f(V )B∗, and that the171

force of infection is given by λ(t) = β B∗(t)/V (t)
B∗(t)/V (t)+1

.172

The measurement model relates the deaths generated by the process173

model (the above-described differential equations for the 7 compartments174

SIR-like model), to those observed in the data, yn, and allows one to compute175

a likelihood for the model given the observations. In a monthly time step, the176

number of new cholera deaths in the nth interval is Mn = m
∫ n/12

(n−1)/12
I(t)dt177

(with t in years). The log-likelihood of each data point yn is obtained through178
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a negative binomial distribution as:179

log(L) = log(NegBinom(yn; ρMn,
1

overdisp2
)), (12)

with mean ρMn (where ρ [-] is the reporting rate) and variance (ρMn/overdisp)
2,180

with overdisp [-] a dispersion parameter. The negative binomial distribution181

allows more overdispersion than that of the Poisson distribution.182

2.3. Parameter inference183

Parameter inference for nonlinear systems of stochastic differential equa-184

tions has recently been facilitated by the development of methods for maxi-185

mizing the likelihood via Iterated Filtering (MIF) [26, 25]. This frequentist186

method is based on a particle filter approach developed by Ionides et al. [25],187

which allows the estimation of parameters via simulation of the model (via188

sequential Monte Carlo). Iterating filtering allows for models with measure-189

ment error, non-stationarity, irregular sampling intervals, and the inclusion190

of covariates. It also allows for hidden variables, that is variables for which191

observations are unavailable, such as the number of susceptible individuals.192

Moreover, the method has the advantage of focusing adaptively on favor-193

able regions of the state-space, and can cope with a broad range of state194

and noise distributions. Iterated filtering is implemented in the R statistical195

open-source computing environment within the package POMP [29]. The196

stochastic equations were integrated using the Euler-Maruyama algorithm.197

For detailed description of the fitting algorithm see [25], and for a previous198

application and explanation of the algorithm in the context of a climate-199

driven model see [33]. In this study, 15 unknown parameters are estimated200

using the 40 years time series of reported cholera deaths.201
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3. Results202

3.1. Parameters estimation203

Table 1 provides a summary of the fitted parameters for each district204

obtained after an initial broad search and an additional local refining of this205

search.206

Dhaka Patna Midnapore

Vt [m] 0.49 5.66 4.59

α [-] 19.85 4.91 14.96

Ṽ [m] 1.87 1.27 3.42

δ [y−1] 5.04 474.35 553.43

µ̄B [y−1] 317.49 107.59 368.20

ε [-] 0.16 0.02 0.02

θ0 [y−1] 0.0036 0.0036 0.0877

φ [y/m] 0.0148 0.1646 0.0298

1/ε [y] 5.43 6.73 4.88

1/γ [d] 3.01 1.57 1.20

d [y−1] 0.0000 0.0109 0.0072

overdisp [-] 0.82 0.79 0.52

ρ [-] 0.10 0.40 0.71

β [y−1] 87.29 2.60 2.15

m [y−1] 23.70 43.43 42.12

Table 1: Maximum likelihood parameters for each district.
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3.2. Seasonality207

Figure 5a shows the median monthly cholera deaths for 40 years of data208

and the corresponding simulation from 1900 to 1940 (1890 to 1930 for Mid-209

napore). The seasonality exhibits the typical bi-modal pattern of cholera210

observed in the district of Dhaka. The two pre- and post-monsoon peaks211

fall respectively in spring and autumn, with corresponding maxima in April212

and December, as expected for the Classical biotype of the pathogen (the213

current El Tor biotype emerged later in the region). The seasonality is well214

captured by the model, with the peaks in phase with the data. The median215

of the simulations also compares well with that of the data, except for a slight216

underestimation of the fall peak. Although the envelope of the model does217

include this variability, it overestimates the winter and spring infections. The218

absence of reported deaths during summer is well captured by the model.219

The single annual peak pattern observed during the monsoon in the north-220

western and drier region of Patna, is also captured by the model (Fig. 5b).221

The medians overlap well with the data, except for the month of August,222

when the simulation underestimates the observed deaths. The envelope of223

the data has a more negatively skewed distribution, with a sharp decrease224

after August, whereas the one of the model is more symmetrical. Finally,225

when no cases are observed between January and March, some sporadic226

deaths are found in the simulations based on its envelope.227

The coastal area of Midnapore shows another interesting pattern, a single228

wider peak in the late winter-early spring. Once again, the dynamics are229

captured by the model. Generally, a slight underestimation is observed in230

the median and in the envelope in late autumn and early winter.231
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Figure 5: Cholera seasonality for the districts of Dhaka (a), Patna (b) and Midnapore

(c). The median (solid lines) and envelope (shaded areas, monthly median of the 10%

and 90% quantiles of the 250 simulated distributions) are shown for cholera mortality, to

compare observations (in red) to model simulations (the result of 250 runs with the MLE

parameter set) (blue).
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Figure 6 shows the different fluxes controlling the water reservoir state232

(rainfall, evapotranspiration, and drainage) over a period of 2 years. The233

model suggests a much lower evapotranspiration in Patna than in the estu-234

arine region of Dhaka. Interestingly, the drainage has a faster response and235

a behaviour that closely tracks rainfall in the dry-northern district, whereas236

a delay is present in the wet-southern areas together with lower values. Mid-237

napore shows an intermediate pattern with low evapotranspiration, a fast238

drainage increase after a rainfall event, followed by a faster decay than that239

in Patna.240

3.3. Interannual variability241

Figure 7 compares the time series of the data to those from the simula-242

tions. (We note that these values do not represent next step prediction but243

the result of a set of 40-year simulations from estimated initial conditions).244

For the districts of Dhaka and Patna, the median of the model captures245

partially but not fully the interannual variation. Dhaka is more subject to246

frequent large outbreaks, and only a few of these are fully captured by the247
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median of the simulations. Patna exhibits less frequent violent epidemics, al-248

though two of them, in 1910 and 1921, are of particular intensity (exceeding249

6500 monthly cholera deaths). Almost every important outbreak is within250

the envelope of the model, suggesting that the model is capable of producing251

those behaviors, but that stochasticity determines their exact timing and the252

resulting variation results in the lower median. Finally, it is worth mentioning253

that although average mortality appears more constant over time for Dhaka,254

a slight downward trend is observed for Patna as reflected in parameter d of255

Table 1. For Midnapore, the results are less clear, as important outbreaks256

between 1900 and 1910 together with a temporary phase of milder infections257

in 1922-1925 give an impression of a downward trend in time. This trend is258

reflected in parameter d, which is slightly positive.259

To assess quantitatively the interannual variation of the data, Singular260

Spectrum Analysis (SSA), a statistical method decomposing the time series261

into (orthogonal) principal components, was used to remove the seasonal262

component of the time series, to extract the interannual variation ([8]; see263

[39, 42] for examples of applications in epidemiology in the context of cli-264

mate variability). Subsequent Fourier analysis of the interannual component265

identified dominant periods of the anomalies in reported deaths of 4.2 and266

7.8 years for Dhaka, 4.2 and 6 years for Patna, and 7.8 years for Midna-267

pore. No evident link with the periodicity of the anomalies in the rainfall or268

temperature could be detected.269
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4. Discussion270

The proposed model explains the first seasonal outbreak in Dhaka by the271

increase in temperature and associated drier conditions of spring, which in272

turn increase pathogen concentration in the aquatic reservoir. This finding273

offers an alternative hypothesis to that of Akanda et al. [2], who propose274

that the first peak is mainly modulated by coastal hydroclimatic conditions275

(salinity, plankton abundance) and the intrusion of salt water inland, during276

periods of low river discharge (spring). Here, hydrological conditions alone277

suffice to explain this characteristic pattern in Dhaka, and the full variation278

of seasonalities across the extensive Bengal region.279

Moreover, for Dhaka, the important summer rains would induce a dilu-280

tion effect, presumably lowering incidence, as suggested by Emch et al. [21]281

for cholera in Bangladesh. The peak stream flow observed in June creates282

important inundations spreading the pathogen across the landscape. Given283

the presence of water bodies in this estuarine region and the low drainage284

suggested by the model, conditions of large scale contamination would be ex-285

pected, with the bacterial population thriving locally without being washed286

out from the area. This persistence would set the stage for a new outbreak287

once the rainy season is over, the concentration of pathogen increases, and288

the susceptible pool is replenished. This explanation is in accordance with289

the more complex hypotheses in the literature (e.g. [28]) relying on impor-290

tant discharges during the monsoon, lower salinity levels and pH, and high291

nutrient loads of the water sources, which in turn favor plankton blooms and292

bacterial growth. Finally the decline in cholera infection observed in January293

and February is found to be temperature related, as suggested by Pascual et294
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al. [37]. However, the bacteria can survive through the winter in the aquatic295

reservoir and be ready to initiate a new outbreak the following year [24, 14].296

Rainfall in the model is found to buffer the propagation of the disease in297

wet regions due to a dilution effect, while enhancing cholera resurgence in298

dry regions. The more important drainage rate found in the dryer district299

of Patna suggests higher discharges, possibly leading to the breakdown of300

sanitary conditions and the boosting of transmission. This completely oppo-301

site pattern to that of Dhaka is consistent with the observation that “overall302

water levels matter and appear to determine whether the effect of rainfall303

is positive or negative” [37]. It further emphasizes the importance of the304

hydrological regime and of the water reservoir to cholera dynamics.305

The model is also able to capture some of the interannual variability of306

cholera based on rainfall and temperature. Although particularly explosive307

outbreaks are above the median of the simulations, these anomalies do fall308

within the envelopes of the model.309

The results of Singular Spectrum Analysis suggest a role of stochasticity310

in explaining the timing of these abnormally large outbreaks, at the same311

time that they also indicate the existence of regularity in the form of some312

detected periodicity above one year. Indeed the periodicity found in the313

anomalies (of the interannual component) of reported deaths implies an in-314

terplay with other climatic or demographic events. Interestingly, the period-315

icity roughly corresponds to the dominant frequency of El Niño (about 1/4316

years−1), the most important driver of interannual climate variability on a317

global scale. This is in accordance with other findings [39, 42], where the318

authors conclude that cholera dynamics are associated with a remote forcing319
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by ENSO (El Niño Southern Oscillation). For example, after the warming of320

the Pacific, changes in cloud cover, evaporation, and increased heat flux can321

be observed a few months later in the Bay of Bengal, thus linking general322

climate to local variables impacting cholera [31]. Other studies also found323

a link between ENSO and the regional climate of Bangladesh by studying324

changes in the monsoon circulation over the area, their associated precipita-325

tions changes and the possible implications for cholera incidence [11, 12, 13].326

Consistent with our findings, an influence of ENSO on cholera would have327

been weaker than in more recent decades, as it was previously described as328

non-stationary in time, and was mainly observed for the more recent decades329

and between 1900 and 1940 exclusively for the spring-peak (February to June)330

[7]. Nevertheless, ENSO would have exerted an influence on the climate of331

the Indian Ocean during the colonial period.332

Patna shows a decline of both the reported and simulated cases over333

time. Although several hypotheses can be formulated to explain this long334

term trend, not much can be done to assess them. One explanation would335

be a change of the reporting rate over time (with changes in administration,336

demography, etc.). Cholera mortality rates in hospitals, for example, are337

known to have decreased over this period [32]. Also, an improvement of338

sanitation in Bengal, reducing cholera prevalence and deaths, is the most339

likely explanation. Regardless, the long-term trend is well captured by the340

model through the parameter d (Eq. 7).341

Besides its application to the three chosen districts, the approach has342

general applicability to other locations within the larger region. Other dis-343

tricts were fitted successfully with the same model, including Chittagong and344
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Parganas. For the coastal district of Parganas, we obtained consistent results345

to those of its close neighbour Midnapore, whose dynamics are also similar346

(Parganas exhibits some differences, including a lower count of summer infec-347

tions and a strong decreasing trend over time). For Northern districts, such348

as Lakhimpur, their strongly epidemic dynamics with intermittent outbreaks349

were only partially captured by the model. This kind of district would re-350

quire an extension of the model that explicitly incorporates extinctions and351

re-invasions.352

Importantly the seasonal patterns considered here are still observed to-353

day in the Bengal region, in Bangladesh and North-East India [23, 16, 20],354

and in other regions of the world, as described in the global review of sea-355

sonal cholera patterns for the period between 1974 and 2005 by Emch et356

al. [20]. For example, cholera infections peak during the rainy season in357

the Philippines, Costa Rica, Lesotho, and Gambia [23, 16]; they peak during358

the summer in South America [34], and after the rainy season in Amazonia,359

Brazil [15]. Furthermore the rather unique double peak of historical Dhaka360

for the classical biotype, has been observed also for the more recent El Tor361

biotype, and for the temporarily emergent strain, Vibrio cholerae O139, in362

1993 in Bangladesh [19].363

5. Conclusion364

For two hundred years, an explanation for the range of seasonal patterns365

in cholera based on local and simple environmental drivers has remained elu-366

sive. Despite numerous studies of the association between climate variability367

and incidence, no unified mechanisms explaining the temporal patterns in en-368
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demic regions have been proposed for cholera. Because the ecology of Vibrio369

cholerae and the relative importance of its different transmission pathways370

(human-to-human and environmental-to-human) are not fully understood,371

there has been a sense that simple environmental drivers cannot explain the372

diverse seasonal patterns of the disease. This study shows that a mechanistic373

model including the explicit influence of rainfall and temperature is capable374

to capture the full range of cholera seasonal patterns present in the historical375

Bengal region.376

Based on an SIR-like model with additional compartments for the water377

volume and the pathogen concentration, insights were gained on the condi-378

tions creating endemicity and variation in seasonal patterns. In particular,379

the hydrological regime proved to be a dominant driver determining the sea-380

sonal dynamics, with rainfall exerting different effects in different regions.381

Specifically, rainfall can enhance transmission in dry regions, while buffering382

the propagation of the disease in wet regions due to a dilution effect. Such383

opposite influences indicate that overall water levels matter and act in com-384

plex ways to determine whether the effect of rainfall is positive or negative.385

Persistence of the disease is enabled by the environmental reservoir, which386

underlies endemicity.387

Although cholera today does no longer exert the global death toll it388

once did, it remains responsible for substantial public health burdens in389

Bangladesh and many developing countries. The dynamics behind its sea-390

sonality have been shown to be closely associated with climate and environ-391

mental variability. An understanding of environmental influences based on392

hydrology could contribute to the better management and planning of public393
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health policies. Informing those capabilities in this way has become today394

of paramount importance, given on-going changes in climate, including ex-395

tremes, and their expected impact on the population dynamics of infectious396

diseases. The changing environment, as the result not just of climate but397

also urbanization and higher population densities, will lead to new societal398

and scientific challenges in disease prevention and mitigation strategies.399
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